Perturbation of mineral metabolism and bone disease are popular complications in chronic kidney disease patients (1-3). This condition is associated with increased morbidity and mortality and diminished quality of life. Additionally it has been detected that these disorders are causally related to numerous adverse clinical outcomes, especially cardiovascular disease and increased bone fracture risk. However, disturbed concentrations of humoral factors are not only epidemiologically connected to cardiovascular morbidity and mortality, but can also be causally implicated, particularly in chronic kidney disease (2-5).

In chronic kidney disease, abnormalities in circulating parameters of mineral and bone metabolism such as serum phosphorous, vitamin D, calcium, parathyroid hormone and fibroblast growth factor 23 are frequently present and associated with adverse clinical consequences far beyond renal osteodystrophy (3-8). Chronic kidney disease progresses to more advanced stages in a small, but significant percentage of people. When chronic kidney disease stage 5 advances to end-stage renal disease, some people progress to renal replacement therapy. When renal dysfunction advances, there is an elevated hazard of mortality and various comorbidities become more serious (2-6). Hyperphosphatemia arises because of inadequate filtering of phosphate from the blood by poorly functioning kidneys. This denotes that a certain amount of the phosphate does not leave the body in the urine, instead staying in the blood at abnormally raised levels (5-8).

Serum phosphate levels is able to directly and indirectly increase parathyroid hormone (PTH) secretion, resulting to the development of secondary hyperparathyroidism. However, abnormalities in bone and mineral metabolism commence to develop in the early stage of chronic kidney disease. Serum phosphorus, calcium, parathormone and alkaline phosphatase are recommended to be assessed from chronic kidney disease stage 3, and it is recommended that these markers be kept within the reference ranges of each facility. The management of phosphorus is principal and is combined of phosphorus restriction and phosphate binders (7-11).

By definition, chronic kidney disease and mineral and bone disorders represent a synopsis of three closely related disease circumstances, laboratory abnormalities indicative of disturbed bone and mineral metabolism, renal osteodystrophy explaining the variety of bone lesion subtypes happening in chronic kidney disease, cardiovascular disease demonstrating left ventricular hypertrophy, accelerated arteriosclerosis and other pathologies in the vasculature and the heart in patients with chronic kidney disease.

In fact, the increased knowledge of the potential role played by mineral and bone disorder in the appearance of cardiovascular disease in renal disease patients has generated investigation efforts intended at discovering possible pathogenic links (2-5).

In chronic kidney disease, abnormalities in circulating parameters of mineral and bone metabolism such as serum phosphorous, vitamin D, calcium, parathyroid hormone and fibroblast growth factor 23 are frequently present and associated with adverse clinical consequences far beyond renal osteodystrophy (3-8). Chronic kidney disease progresses to more advanced stages in a small, but significant percentage of people. When chronic kidney disease stage 5 advances to end-stage renal disease, some people progress to renal replacement therapy. When renal dysfunction advances, there is an elevated hazard of mortality and various comorbidities become more serious (2-6). Hyperphosphatemia arises because of inadequate filtering of phosphate from the blood by poorly functioning kidneys. This denotes that a certain amount of the phosphate does not leave the body in the urine, instead staying in the blood at abnormally raised levels (5-8).

Serum phosphate levels is able to directly and indirectly increase parathyroid hormone (PTH) secretion, resulting to the development of secondary hyperparathyroidism. However, abnormalities in bone and mineral metabolism commence to develop in the early stage of chronic kidney disease. Serum phosphorus, calcium, parathormone and alkaline phosphatase are recommended to be assessed from chronic kidney disease stage 3, and it is recommended that these markers be kept within the reference ranges of each facility. The management of phosphorus is principal and is combined of phosphorus restriction and phosphate binders (7-11).

By definition, chronic kidney disease and mineral and bone disorders represent a synopsis of three closely related disease circumstances, laboratory abnormalities indicative of disturbed bone and mineral metabolism, renal osteodystrophy explaining the variety of bone lesion subtypes happening in chronic kidney disease, cardiovascular disease demonstrating left ventricular hypertrophy, accelerated arteriosclerosis and other pathologies in the vasculature and the heart in patients with chronic kidney disease.

Received: 12 June 2014, Accepted: 21 July 2014, ePublished: 14 August 2014

1Chronic Renal Failure Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. 2Department of Internal Medicine, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran. 3Department of Internal Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. 4Chronic Renal Failure Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.

*Corresponding author: Prof. Hamid Nasri, Email: hamidnasri@yahoo.com
Additionally, Sclerostin and Dickkopf (DKK1), both secreted mainly by osteocytes, are important wingless-type (Wnt) inhibitors and as such can interfere with systems for biological signaling which operate in the vessel wall (10-14). Osteocalcin, generated by osteoblasts or released from mineralized bone, interferes with insulin concentrations and sensitivity, and its metabolism is perturbed in renal disease (11-15). These bone-derived humoral factors may place the bone at the center of cardiovascular disease accompanying with chronic renal failure (13-15). Most significantly, factors that dictate the regulation of these elements in bone and subsequent secretion into the circulation have not been investigated, and could provide entirely new opportunities for therapeutic intervention.

Authors' contributions
All authors contributed to paper equally.

Ethical considerations
Ethical issues (including plagiarism, informed consent, misconduct, double publication and redundancy) have been completely observed by authors.

Conflict of interests
The authors declared no competing interests.

Funding/Support
No funding from any source.

References


Copyright © 2014 The Author(s); Published by Nickan Research Institute. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.